PROOFS 4

CSC 240

P => Q

- Assume the negation of the statement (P => ~Q)
- Start with either P or ~Q
- Attempt to move towards the other statement until you arrive at a contradiction.

If you play with fire, you'll get burned.

I didn't get burned, so I didn't play with fire.

If it rains, you'll get wet.

You didn't get wet, so it didn't rain.

P => QNot Q => Not P

INDIRECT PROOFS - PROOF BY CONTRAPOSITIVE

INDIRECT PROOFS - PROOF BY CONTRAPOSITIVE

subset of another set?

INDIRECT PROOFS - WRITING THE PROOF WITH WORDS

If $A \subseteq B$, then (A ∩ B) = A f (A ∩ B) ≠ A, then A ⊈ B	We will prove the <i>contrapositive</i> , i.e. for sets A and B	
A: $(A \cap B) \neq A$	(A ∩ B) ≠ A ⇒ A ⊈ B	(1)
A1: $x \in A$ and $x \notin (A \cap B)$ B1: $x \in A$ and $x \notin B$	From (1) we see that there exists an element <i>x</i> such that	
B: A ⊈ B	$x \in A$	(2)
	and	
	x ∉ (A ∩ B).	(3)
	From (3) we see that either	
	x ∉ A	(4)
	or	
	$x \notin B$.	(5)
	However, (4) contradicts (2), therefore	
	$x \in A$ and $x \notin B$.	(6)
	Hence	
	A ⊈ B. ■	

INDIRECT PROOFS - WRITING THE PROOF WITH LATEX

We will prove the contrapositive, i.e. for sets A and B

```
\begin{equation}
\label{contra}
  (A \cap B) \ne A \Rightarrow A \nsubseteq B
\end{equation}
```

From \ref{contra} we see that there exists an element x such that

```
\begin{equation}
\label{x-A}
  x \in A
\end{equation}
```

```
and
```

```
\begin{equation}
\label{x-intersect}
  x \notin (A \cap B).
\end{equation}
```

From \ref{x-intersect} we that either

```
\begin{equation}
\label{x-intersect-A}
  x \notin A
\end{equation}
```

or

\begin{equation}
\label{x-intersect-B}
 x \notin B.
\end{equation}

However, $ref{x-intersect-A}$ contradicts $ref{x-A}$, therefore

```
\begin{equation}
\label{x-intersect-final}
  x \in A \land x \notin B.
\end{equation}
```

Hence

```
\begin{equation}
\label{final}
   A \nsubseteq B. \blacksquare
\end{equation}
```

Direct Proof / Forward Backwards Method

Given P => Q

Assume P and Q are true.

Work Forwards from P and Backwards from Q until you meet in the middle.

Proof by Contradiction

Given $P \Rightarrow Q$

Assume P and ~Q are true.

Work Forwards from P and ~Q until a contradiction is found.

Proof by Contrapositive

Given $P \Rightarrow Q$

Assume ~Q and ~P are true.

Work Forwards from ~Q and Backwards from ~P until you meet in the middle.