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SET MEMBERSHIP

▸ Sets are referred to by uppercase letters (A, B, S, etc…) 

▸ Elements are usually referred to by lowercase letters (x, a, 
z, etc…) 

▸ Given a set S and an element x, if x is an element of S, we 
would write:  
                                               x ∈ S 
otherwise, we would write: 
                                               x ∉ S 

▸ Given ANY set S and ANY element x, either x ∈ S or x ∉ S.



THE EMPTY SET

{ }
the empty set contains 

no elements

∅
the symbol for the 

empty set



WHAT IS A SET?

{ }∅≠
this is the empty set 

a set which contains nothing

this is a set that contains 
one element. That element 

is the empty set.

∅



FAMOUS SETS

▸ The set of natural numbers, ℕ+ {1, 2, 3, …} 

▸ The other set of natural numbers, ℕ {0, 1, 2, 3, …} 

▸ The set of integers, ℤ {…, -2, -1, 0, 1, 2, …} 

▸ The set of all real numbers, ℝ

these are all infinite sets



SUBSETS

{ ,, }
{ , }

A = 

B = 

B ⊆ A A ⊇ B
“…is a subset of…” “…is a superset of…”



SUBSETS

If A and B are sets, and every element of B is also an 
element of A , then B is a subset of A, written as: 
                                     B ⊆ A 
and A is a superset of B, written as: 
                                     A ⊇ B 



SUBSETS

{ ,, }A = 

B = 

B ⊆ A A ⊇ B

{ ,, }

If A and B are sets, and every element of B is also an 
element of A , then B is a subset of A, written as: 
                                     B ⊆ A 
and A is a superset of B, written as: 
                                     A ⊇ B 



SUBSETS

{ ,, }A = 
B = 

B ⊆ A A ⊇ B

{ ,, }
C = { , }

C ⊊ A A ⊋ C
“…is a proper subset of…” “…is a proper superset of…”
Alt. Symbol: ⊂ Alt. Symbol: ⊃



SUBSETS

‣ If A and B are sets, and every element of B is also an 
element of A , then B is a subset of A, written as: 
                                     B ⊆ A 
and A is a superset of B, written as: 
                                     A ⊇ B  

‣ If A is a subset of B, but A is not equal to B, then B is a 
proper subset of A, written as: 
                                     B ⊊ A 
and A is a proper superset of B, written as:  
                                     A ⊋ B 



SUBSETS

{ ,, }∈

{ ,, }⊆{ }
“…is an element of…”

“…is a subset of…”



SUBSETS

If A and B are sets, and every element of 
B is also an element of A , then B is a 
subset of A.

∅ ? A
Is the empty set a subset of this set?  

(or of any set)

Is this statement true? 
“All elements of ∅ are also elements of set A”

{ ,, }A =



VACUOUS TRUTH

“All unicorns are pink.”

“All flying whales have blue eyes.”

“All Microsoft iPods have good battery life.”

“All Microsoft iPods have poor battery life.”

These are ALL true statements!

Are these statements true or false?



VACUOUS TRUTH

‣ A statement is vacuously true if it is of the form: 
                                 {x ∈ ∅} ⊆ A 
in other words:  
                                  P(x) ⇒ Q(x) where P = ∅ 

‣ Vacuously true statements are automatically true.

“if x is a member of P, then 
it is also a member of Q” “But P has no members”



SUBSETS

If A and B are sets, and every element of 
B is also an element of A , then B is a 
subset of A.

∅ ? A
Is the empty set a subset of this set?  

(or of any set)

Is this statement true? 
“All elements of ∅ are also elements of set A”

{ ,, }A =

∅ ⊆ A

YES! Because this statement is vacuously true! 



POWER SET

‣ The power set of A is the set of all subsets 
of A, and is written as: 
                                  𝓅(A)

Different texts use different 
“fancy letter p’s” for this. 
This one is called the 
“Weierstrass p”.



POWER SET

‣ The power set of A is the set of all subsets 
of A, and is written as: 
                                  𝓅(A) 

‣ or, more formally: 
                    𝓅(A) = { B : B ⊆ A }

Different texts use different 
“fancy letter p’s” for this. 
This one is called the 
“Weierstrass p”.



POWER SET

B = {1, 2, 3}
𝓅(B) = {  ∅, {1}, {2}, {3},  
                {1, 2}, {1, 3}, {2, 3},  
                {1, 2, 3} }

A = {x, y}
𝓅(A) = { ∅, {x}, {y}, {x, y} }



CARDINALITY

‣ The cardinality of a set is the number of 
elements contained in that set. It is written 
as: 
                                  | A |



CARDINALITY

{ ,, }

{ , }

A = 

B = 
| A | = 3

| B | = 2

| C | = 9
C = { x ∈ ℕ+ : x < 10 }



CARDINALITY

| ℕ | = ?



CARDINALITY

| ℕ | = ℵ0

“aleph (alef) zero” 
“aleph naught” 
“aleph null”

WARNING: THINGS ARE ABOUT TO 

GET WEIRD!



COMPARING CARDINALITIES

{ 1, 2, 3}

{ a, b, c}

‣ Two sets have the same cardinality if there 
is a way to pair off their elements without 
leaving any elements out of the pairing.

{ 1, 2, 3, 4}

{ a, b, c}

these sets have the 
same cardinalities

these sets do not have 
the same cardinalities



COMPARING CARDINALITIES

ℕ = { 0,  1,  2,  3,  4,  5,  6, … }

A = { x ∈ ℕ : x is even }

A = { 0,       2,       4,        6, … }

do ℕ and A have the same cardinality? 



COMPARING CARDINALITIES

ℕ = { 0,  1,  2,  3,  4,  5,  6, … }

A = { 0,       2,       4,        6, … }

Two sets have the same cardinality if there is a way 
to pair off their elements without leaving any 
elements out of the pairing.

there is a way



COMPARING CARDINALITIES

ℕ = { 0,  1,  2,  3,  4,  5,  6, … }

Two sets have the same cardinality if there is a way 
to pair off their elements without leaving any 
elements out of the pairing.

there is a way

A = { 0,  2,  4,  6,  8, 10, 12, … }
n       2n

| ℕ | = | A | = ℵ0



COMPARING CARDINALITIES

ℕ = { 0,  1,  2,  3,  4,  5,  6, … }

Two sets have the same cardinality if there is a way 
to pair off their elements without leaving any 
elements out of the pairing.

there is a way

ℤ = { …, -2,  -1,  0,  1,  2, 3, … }



COMPARING CARDINALITIES

ℕ = { 0,  1,  2,  3,  4,  5,  6, … }

Two sets have the same cardinality if there is a way 
to pair off their elements without leaving any 
elements out of the pairing.

there is a way

ℤ = { 0, -1,  1, -2,  2, -3,  3, … }

Pair off non-negative integers with even naturals
Pair off negative integers with odd naturals

ℤ = { …, -2,  -1,  0,  1,  2, 3, … }

| ℕ | = | ℤ | = ℵ0



CARDINALITY

Does every infinite set have the 
same cardinality?



POWER SET

B = {1, 2, 3}
𝓅(B) = {  ∅, {1}, {2}, {3},  
                {1, 2}, {1, 3}, {2, 3},  
                {1, 2, 3} }

A = {x, y}
𝓅(A) = { ∅, {x}, {y}, {x, y} }

 | A |  <  | 𝓅(A) |

| B |  < | 𝓅(B) |



CARDINALITY

If A is in infinite set, then what is the 
relationship between | A | and | 𝓅(A) | ?

1. Two sets have the same cardinality if there is 
a way to pair off their elements without leaving 
any elements out of the pairing.

2. | A | = | 𝓅(A) | if there is a way to pair off the 
elements of A with the elements of 𝓅(A) 
without leaving any elements out of the 
pairing.

3. | A | = | 𝓅(A) | if there is a way to pair off the 
elements of A with the the subsets of A 
without leaving any elements out of the 
pairing.

Can we do this?



CARDINALITY

x0

x1

x2

x3

…

X = {x0, x1, x2, x3, …}

{ x0, x2, x3, …} 

{ x1, x2, x3, …} 

{ x0, x1, …} 

{ x2, …} 



CARDINALITY

x0

x1

x2

x3

…

X = {x0, x1, x2, x3, …}

{ x0, x2, x3, …} 

{ x1, x2, x3, …} 

{ x0, x1, …} 

{ x2, …} 

x0 x1 x2 x3 …

x0

x1

x2

x3

…

Y N Y Y …

N Y Y Y …

Y Y N N …

N N Y N …

… … … … …



CARDINALITY

X = {x0, x1, x2, x3, …}

x0 x1 x2 x3 …

x0

x1

x2

x3

…

Y N Y Y …

N Y Y Y …

Y Y N N …

N N Y N …

… … … … …

Y

Y

N

N

…

Y Y N N … does this row have  
a pairing?



CARDINALITY

X = {x0, x1, x2, x3, …}

x0 x1 x2 x3 …

x0

x1

x2

x3

…

Y N Y Y …

N Y Y Y …

Y Y N N …

N N Y N …

… … … … …

Y

Y

N

N

…

Y Y N N …
generate the complement 
of the row by flipping its Y’s 
and N’s.

N N Y Y …
does this row have  
a pairing?



THE DIAGONALIZATION PROOF AND CANTOR’S THEOREM

‣ No matter how the elements of A and 𝓅(A) are paired 
up, the complemented diagonal won’t have a match. 

‣ No matter how the elements of A and the subsets of A 
are paired up, there will always be at least one subset 
that won’t have a match. 

‣ Cantor’s Theorem: Every set A is strictly smaller than 
its power set, 𝓅(A): 
                                      | A |  <  | 𝓅(A) |



THE DIAGONALIZATION PROOF AND CANTOR’S THEOREM

‣ This means that 
                                      | ℕ |  <  | 𝓅(ℕ) | 

‣ And that: 
                                | 𝓅(ℕ) |  <  | 𝓅(𝓅(ℕ)) | 

‣ And: 
                          | 𝓅(𝓅(ℕ)) |  <  | 𝓅(𝓅(𝓅(ℕ))) | 

‣ Therefore, not all infinite sets have the same size 

‣ There is no biggest infinity 

‣ There are infinitely many infinities



CANTOR’S THEOREM AND COMPUTABILITY

The set of all computer programs

The set of all problems



CANTOR’S THEOREM AND COMPUTABILITY

‣ A string is a sequence of characters. 

‣ Two important facts: 

‣ There are at most as many programs as there are 
strings. 

‣ There are at least as many problems as there are 
sets of strings.



CANTOR’S THEOREM AND COMPUTABILITY

‣ The source code of any computer program is just a 
long string of text. 

‣ All programs are strings, but are all strings programs?

int main() { 
   cout << “Hello”; 
}

int main(){cout<<“Hello”;}



CANTOR’S THEOREM AND COMPUTABILITY

                                                        ALL STRINGS     

ALL COMPUTER 
PROGRAMS

| Programs | ≤ | Strings |



CANTOR’S THEOREM AND COMPUTABILITY

‣ Is there a connection between the number of sets of 
strings and the number of problems to solve? 

‣ Let S be any set of strings. Given a string w, determine 
if w ∈ S.

S = { “a”, “b”, “c”, …, “z” }
Given a string w, determine whether w is a single lower-case 
English letter.

S = { “1”, “2”, “3”, … }
Given a string w, determine whether w represents a positive 
integer.



CANTOR’S THEOREM AND COMPUTABILITY

‣ Every set of strings corresponds to at least one unique 
problem to solve. 

‣ Other problems also exist.



CANTOR’S THEOREM AND COMPUTABILITY

                                                        ALL PROBLEMS     

PROBLEMS 
FORMED BY SETS 

OF STRINGS

| Sets of Strings | ≤ | Problems |



CANTOR’S THEOREM AND COMPUTABILITY

‣ Every computer program is a string. 

‣ There are at most as many programs as there are 
strings. 

‣ There are at least as many problems as there are 
sets of strings. 

‣ Cantor’s Theorem tells us that there are more sets of 
strings than there are strings. 
                                        | S |  <  | 𝓅(S) |

| Programs | ≤ | Strings | | Sets of Strings | ≤ | Problems |<

| Programs |     <     | Problems |



CANTOR’S THEOREM AND COMPUTABILITY

There are more problems to solve than there are programs to solve them.

There are infinitely more problems to solve than there are programs to solve them.

If you choose a problem at random from the set of all problems, the 
probability that it is solvable by a computer program is zero.

How can you prove whether or not the problem you’re trying to solve with 
your computer program is actually solvable by a computer program?


