FUNCTIONS

CSC 240

	Input	Output	Example
Connectives	Proposition(s)	A Proposition	$x \in A \rightarrow x \in A \cap B$
Predicates	Object(s)	A Proposition	IsFood(Carrot)
Functions	Object(s)	An Object	Breakfast(Yesterday)

Functions: Produce on object based on the properties of another object. SecretIdentity(Superman) ColorOf(BrotherOf(Mario))

A function is an object that takes input and produces exactly one output.

Functions: Produce on object based on the properties of another object. SecretIdentity(Superman) ColorOf(BrotherOf(Mario))

A function is an object that takes input and produces exactly one output.

Math function: f(x) = 2x + 3
CS function: int magnitude(Vector v) {
 return squareRoot(v.x * v.x + v.y * v.y);
 }

A function maps an object from an element in its Domain to an element in its Codomain.

SecretIdentity(x)

Domain

Codomain

Rule 1: The function must produce an output for every element of the domain.

FUNCTIONS

Rule 1: The function must produce an output for every element of the domain.

Rule 2: The output of the function must be in its codomain.

SecretIdentity(x) Superheroes **MCU** People !!!

Functions: Produce on object based on the properties of another object. SecretIdentity(Superman) ColorOf(BrotherOf(Mario))

A function is an object that takes input and produces exactly one output. The domain of a function is the set of all possible inputs to that function.

The codomain of a function is the set of all possible outputs from that function. Rule 1: The function must produce an output for every element of the domain. Rule 2: The output of the function must be in its codomain.

The range of a function is the set of all actual outputs from that function.

If the domain of the function, f, is the set D and the codomain is the set C: $f: D \rightarrow C$

$$\forall x \in D. \exists y \in C. f(x) = y$$

The function must produce an output for every element of the domain.

The output of the function must be in its codomain.

$$\forall x_1 \in D. \ \forall x_2 \in D. \ (x_1 = x_2 \rightarrow f(x_1) = (x_2))$$

Functions must be deterministic.

FUNCTION COMPOSITION

functions can be combined

 $f: A \to B$ $g: B \to C$

 $g \circ f : A \rightarrow C$ $(g \circ f)(x) : g(f(x))$ **Injective Functions:**

$$\forall x_1 \in D. \ \forall x_2 \in D. (x_1 \neq x_2 \rightarrow f(x_1) \neq (x_2))$$

If the inputs are different, then the outputs will be different.

$$\forall x_1 \in D. \ \forall x_2 \in D. (f(x_1) = (x_2) \rightarrow x_1 = x_2)$$

If the outputs are the same, then the inputs were the same.

Which of these are injective? f(x) = x + 1 $f(x) = x^{2}$ Surjective Functions:

$$\forall y \in C. \exists x \in D. (f(x) = y)$$

For every possible output, there is at least one input that produces it.

Which of these are surjective?

 $f(x) = x \text{ where } f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x / 2 \text{ where } f: \mathbb{Z} \to \mathbb{R}$

Bijective Functions:

A function that is both injective and surjective.

Inverse Function:

A function f⁻¹ is the inverse of function f if the following statements are true:

 $\forall x \in D. (f^{-1}(f(x)) = x) \qquad \forall y \in D. (f(f^{-1}(x)) = x)$

A function with an inverse is called an invertible function.