CSC 240

COMPLEXITY 3



COBHAM-EDMONDS THESIS

"Computational problems can be feasibly computed on some

only if they can be computed in polynomial
time.”

“Languages can be decided efficiently on some only
if they can be computed in O(nk)."

P={L|There is a polynomial time decider for L }



ALGORITHMIC EFFICIENCY

» Complexity class P contains all problems that can be
in polynomial time.

» Complexity class NP contains all problems that can be

verified in polynomial time.

P={L|There is a polynomial time decider for L }

NP ={L|There is a polynomial time verifier for L }



LANGUAGES

Polynomial Time Languages

NP Languages

ALL REGULAR
LANGUAGES

DECIDABLILANGUAGES
(R) - RECURSIVE Ls:NGUAGES

ALL LANGUAGES

RECOGNIZABLE LAN{UAGES
(RE) - RECURSIVELY ENUMERABLE 4NGUAGES



P 2 NP

If a solution to a problem can be verified efficiently, does that
mean there is some algorithm to decide that problem efficiently?

Proving this statement true or false will change the face of computer science.



NP COMPLEXITY

Are all NP problems equally difficult to solve?

If not, how can we rank their level of difficulty?



REDUCIBILITY

If we can take a problem, A, and convert it to another form, B,
then if B has a solution, so does A.

1.1f Ais reducible to B, and B is decidable, then A is decidable.

2.If Ais reducible to B, and A is undecidable, then B is
undecidable.



EFFICIENT REDUCIBILITY

If we can take a problem, A, and efficiently convert it to another
form, B, then if B has an efficient solution, so does A.

If A is reducible to B in polynomial time, and B is decidable in
polynomial time, decidable, then A is also decidable in
polynomial time.

A<pB



NP-HARD PROBLEMS

A language L is NP-Hard if every language in NP is reducible to it.




NP-COMPLETE PROBLEMS

A language L is NP-Complete if L is NP-Hard and L € NP.




THE ULTIMATE QUESTION

Fun Fact: If any NP-Complete language is in P, then P = NP
Fun Fact: If any NP-Complete language is in P, then P 2 NP

So to claim your $1,000,000 you just need to prove that any NP-Complete problem is or is not in P!
Easy Money!!!

| know an NP-Complete joke, but once you've heard one, you've heard them all...



THE ULTIMATE QUESTION

MY HOBBY:

EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

% CHOTCHKIES R ESTAUKﬁ;ﬂ
2SSl VD

— APPENZERS ~—~

MIXED FRUIT 2:15)
FRENCH FRIES 2.75
SIDE SALAD 2.35
HOT WINGS 3.55
MOZZAREUA STICRS  4-20
SAMPLER PLATE 5.80

— SANDWICHES ~—

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE.

(l L EXACTLY? UMK
HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET T0 —

SOMETHING ON TRAVELING SALESNAN?

\
(FILR

— G FRST S PUSSIRLE. OF (OURSE. WANT /




NP HARD PROBLEMS

There are lots of problems that appear to be easy, but are
actually NP-Hard.

This means that there is no known algorithm that can efficiently
(in polynomial time) solve those problems for all inputs.

This means that if you do have to solve an NP-Hard problem,
you have to be content with one of these options:

1. An approximate answer (local minimum vs the exact minimum)
2. A probabilistic answer

3. An algorithm that only works for a subset of possible inputs



SOME NP-HARD PROBLEMS

 Computational biology: Given a set of genomes, what is the most
probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

« Game theory: Given an arbitrary perfect-information, finite, twoplayer
game, who wins? (Generalized geography problem)

* Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

« Machine learning: Given a set of data, find the simplest way of
modeling the statistical patterns in that data (Bayesian network
inference problem)

« Medicine: Given a group of people who need kidneys and a group of
kidney donors, find the maximum number of people who can end up
with kidneys (Cycle cover problem)

* Systems: Given a set of processes and a number of processors, find the
optimal way to assign those tasks so that they complete as soon as
possible (Processor scheduling problem)




