
COMPLEXITY 3
CSC 240

COBHAM-EDMONDS THESIS

“Computational problems can be feasibly computed on some
computational device only if they can be computed in polynomial
time.”

“Languages can be decided efficiently on some Turing machine only
if they can be computed in O(nk).”

P = { L | There is a polynomial time decider for L }

▸ Complexity class P contains all problems that can be
decided in polynomial time.

▸ Complexity class NP contains all problems that can be
verified in polynomial time.

ALGORITHMIC EFFICIENCY

P = { L | There is a polynomial time decider for L }

NP = { L | There is a polynomial time verifier for L }

ALL LANGUAGES

RECOGNIZABLE LANGUAGES
(RE) - RECURSIVELY ENUMERABLE LANGUAGES

LANGUAGES

 ALL CONTEXT FREE LANGUAGES

ALL REGULAR
LANGUAGES

DECIDABLE LANGUAGES
(R) - RECURSIVE LANGUAGES

ATM

LD

Polynomial Time Languages NP Languages

P ≟ NP
If a solution to a problem can be verified efficiently, does that

mean there is some algorithm to decide that problem efficiently?

Proving this statement true or false will change the face of computer science.

NP COMPLEXITY

Are all NP problems equally difficult to solve?

If not, how can we rank their level of difficulty?

REDUCIBILITY

If we can take a problem, A, and convert it to another form, B,
then if B has a solution, so does A.

1. If A is reducible to B, and B is decidable, then A is decidable.

2. If A is reducible to B, and A is undecidable, then B is
undecidable.

EFFICIENT REDUCIBILITY

If we can take a problem, A, and efficiently convert it to another
form, B, then if B has an efficient solution, so does A.

If A is reducible to B in polynomial time, and B is decidable in
polynomial time, decidable, then A is also decidable in
polynomial time.

A B

P

w

f (w)

A ≤P B

NP-HARD PROBLEMS

A language L is NP-Hard if every language in NP is reducible to it.

NP NP-HARD

L

A

B
C

NP-COMPLETE PROBLEMS

A language L is NP-Complete if L is NP-Hard and L ∈ NP.

NP NP-HARD

L

A

B
C

THE ULTIMATE QUESTION

Fun Fact: If any NP-Complete language is in P, then P = NP

Fun Fact: If any NP-Complete language is not in P, then P ≠ NP

So to claim your $1,000,000 you just need to prove that any NP-Complete problem is or is not in P!  
Easy Money!!!

I know an NP-Complete joke, but once you’ve heard one, you’ve heard them all…

THE ULTIMATE QUESTION

https://xkcd.com/287/

NP HARD PROBLEMS

There are lots of problems that appear to be easy, but are
actually NP-Hard.

This means that there is no known algorithm that can efficiently
(in polynomial time) solve those problems for all inputs.

This means that if you do have to solve an NP-Hard problem,
you have to be content with one of these options:

1. An approximate answer (local minimum vs the exact minimum)
2. A probabilistic answer
3. An algorithm that only works for a subset of possible inputs

SOME NP-HARD PROBLEMS

 Keith Schwarz — Stanford

