CSC 240

COMPLEXITY 2

COBHAM-EDMONDS THESIS

"Computational problems can be feasibly computed on some

only if they can be computed in polynomial
time.”

“Languages can be decided efficiently on some only
if they can be computed in O(nk)."

P={L|There is a polynomial time decider for L }

LANGUAGES Polynomial Time Languages

ALL LANGUAGES
Lp
Atm
DECIDABLILANGUAGES
(R) - RECURSIVE LNGUAGES
ALL REGULAR
LANGUAGES

RECOGNIZABLE LANGUAGES

(RE) - RECURSIVELY ENUMERABLE LANGUAGES

ALGORITHMIC EFFICIENCY

Searching for some specific type of thing (biggest,
smallest, longest, etc...) object in a group usually results in
exponentially many options.

This means that brute-force approaches tend to run in
- O(2n).

"Good"” algorithms tend to run in polynomial time O(n),
O(n2), O(n3), etc...

O(nk) algorithms tend to scale well as the size of the data
(n) increases, while O(2n) algorithms scale poorly.

COMPLEX PROBLEMS

Can this be in polynomial time?
Can this be verified in polynomial time?

ALGORITHMIC EFFICIENCY

» Complexity class P contains all problems that can be
in polynomial time.

» Complexity class NP contains all problems that can be

verified in polynomial time.

P={L|There is a polynomial time decider for L }

NP ={L|There is a polynomial time verifier for L }

The Ultimate Question

(of Computer Science)

P 2 NP

If a solution to a problem can be verified efficiently, does that
mean there is some algorithm to decide that problem efficiently?

Proving this statement true or false will change the face of computer science.

THIS IS LITERALLY A MILLION DOLLAR QUESTION

ABOUT PROGRAMS _ PEOPLE PUBLICATIONS EVENTS EUCLID

P vs NP Problem

Suppose that you are organizing housing
accommodations for a group of four hundred
university students. Space is limited and only one

hundred of the students will receive places in the
Rules for the Millennium

dormitory. To complicate matters, the Dean has)
Prizes

provided you with a list of pairs of incompatible

students, and requested that no pair from this list

’ g appear in your final choice. This is an example of
¢ T " , Y what computer scientists call an NP-problem, since Related Documents:

it is easy to check if a given choice of one hundred students proposed by a coworker is satisfactory (i.e., no pair —
| Official Problem

taken from your coworker's list also appears on the list from the Dean's office), however the task of generating D ot
escription

such a list from scratch seems to be so hard as to be completely impractical. Indeed, the total number of ways
of choosing one hundred students from the four hundred applicants is greater than the number of atoms in the] Minesweeper
known universe! Thus no future civilization could ever hope to build a supercomputer capable of solving the
problem by brute force; that is, by checking every possible combination of 100 students. However, this
apparent difficulty may only reflect the lack of ingenuity of your programmer. In fact, one of the outstanding)

. Related Links:
problems in computer science is determining whether questions exist whose answer can be quickly checked,

but which require an impossibly long time to solve by any direct procedure. Problems like the one listed above Lecture by Vijaya

certainly seem to be of this kind, but so far no one has managed to prove that any of them really are so hard as Ramachandran

they appear, i.e., that there really is no feasible way to generate an answer with the help of a computer.
Stephen Cook and Leonid Levin formulated the P (i.e., easy to find) versus NP (i.e., easy to check) problem
independently in 1971.

Image credit: on the left, Stephen Cook by Jifi Jani¢ek (cropped). CC BY-SA 3.0

IFP = NP

A huge number of problems that were previously thought to be
verifiable, but unsolvable in polynomial time, can in fact be
solved in polynomial time if the right algorithm is found.

IFP = NP

Entire groups of seemingly simple problems may not in fact
be solvable by computers.

47 Years of attempts have been inadequate to prove this either way.

What do leading scientists think? Introduction to Complexity Theory Column 36

LANGUAGES Polynomial Time Languages

ALL LANGUAGES
Lp
Atm
DECIDABLILANGUAGES
(R) - RECURSIVE LNGUAGES
ALL REGULAR
LANGUAGES

RECOGNIZABLE LANGUAGES

(RE) - RECURSIVELY ENUMERABLE LANGUAGES

