
COMPLEXITY 1
CSC 240



Are there natural laws which govern 
what we can do with computer science?

Course Purpose



Course Purpose

Which types of problems can be solved by a 
computer?

How can we quantify the difficulty of a problem?

How can we prove that our answers to these 
questions are correct?

Computability Theory

Complexity Theory

Discrete Math



ALL LANGUAGES

RECOGNIZABLE LANGUAGES 
(RE) - RECURSIVELY ENUMERABLE LANGUAGES

LANGUAGES

     ALL CONTEXT FREE LANGUAGES     

ALL REGULAR 
LANGUAGES

DECIDABLE LANGUAGES 
(R) - RECURSIVE LANGUAGES 

ATM

LD



▸ We now know ways to determine if a problem is solvable. 

▸ Solvable problems can be solved in a finite amount of 
time. 

▸ However, just because a problem is solvable in a finite 
amount of time, doesn’t mean we can wait that long.

KEY FACTS



COMPLEX PROBLEMS



COMPLEX PROBLEMS

1 4 9 2 5 11 3 8 12 7

Subsequence Problem: Find the longest increasing subsequence (Ex: 1, 4, 5, 11)

Naive Approach: Try every possible subsequence until you find the 
longest increasing one.

For a sequence of length n, there are 2n possibilities.

This means, a sequence of 60 numbers would take 260 attempts.

The universe is less than 259 seconds old.



COMPLEX PROBLEMS

1 4 9 2 5 11 3 8 12 7

Subsequence Problem: Find the longest increasing subsequence (Ex: 1, 4, 5, 11)

1 4 9

2 5

11

3

8

12

7

Another Approach: Patience Sorting Algorithm

O(n log n)



▸ Searching for some specific type of thing (biggest, 
smallest, longest, etc…) object in a group usually results in 
exponentially many options. 

▸ This means that brute-force approaches tend to run in 
exponential time - O(2n). 

▸ “Good” algorithms tend to run in polynomial time O(n), 
O(n2), O(n3), etc… 

▸ O(nk) algorithms tend to scale well as the size of the data 
(n) increases, while O(2n) algorithms scale poorly.

ALGORITHMIC EFFICIENCY



COBHAM-EDMONDS THESIS

“Computational problems can be feasibly computed on some 
computational device only if they can be computed in polynomial 
time.”

“Languages can be decided efficiently on some Turing machine only 
if they can be computed in O(nk).”



COBHAM-EDMONDS THESIS

According to Cobham-Edmonds:

Efficient Algorithms Inefficient Algorithms

O(n2)

O(2n)

O(n3)

O(n!)

O(n log n)

O(kn)

O(n500) O(1.000001n)

Not everyone agrees with this thesis!



x(n+1) = x · xn

xa · xb = x(a+b)

(xa)b = x(a·b)

x
1
2 =

p
x

x
1
a = a

p
x

(xa)b = x(a·b) = (xb)a

PROPERTIES OF POLYNOMIALS

Combining polynomial time algorithms in 

different ways result in polynomial time 

algorithms.



COBHAM-EDMONDS THESIS

“Computational problems can be feasibly computed on some 
computational device only if they can be computed in polynomial 
time.”

“Languages can be decided efficiently on some Turing machine only 
if they can be computed in O(nk).”

P = { L | There is a polynomial time decider for L }



ALL LANGUAGES

RECOGNIZABLE LANGUAGES 
(RE) - RECURSIVELY ENUMERABLE LANGUAGES

LANGUAGES

     ALL CONTEXT FREE LANGUAGES     

ALL REGULAR 
LANGUAGES

DECIDABLE LANGUAGES 
(R) - RECURSIVE LANGUAGES 

ATM

LD

Polynomial Time Languages


