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ACCEPTANCE PROBLEMS

We can build a Turing Machine that tells us:

If a DFA will accept a string.

If an NFA will accept a string.

If a Regular Expression will accept a string.

If a CFG describes a string.

If a PDA accepts a string.

We can’t build a Turing Machine that tells us:

If a TM will halt (accept or reject) on a string. Not Decidable

Decidable}
All of these problems (languages) are recognizable by at least one TM.

Are there problems (languages) not recognizable by any TM?



ALL LANGUAGES

RECOGNIZABLE LANGUAGES 
(RE) - RECURSIVELY ENUMERABLE LANGUAGES

LANGUAGES

     ALL CONTEXT FREE LANGUAGES     

ALL REGULAR 
LANGUAGES

DECIDABLE LANGUAGES 
(R) - RECURSIVE LANGUAGES 

ATM

LD

How can we determine where a language fits?



TURING LANGUAGES

A language is “Turing Recognizable” if a Turing machine 
recognizes it.

A language is “Turing Decidable” if a Turing machine decides it, 
that is if the strings of that language cause the Turing machine 
to end up in an accept or reject state.



TURING LANGUAGES

L ∈ R: We can write a computer program that “solves” problems 
expressed by L. That is, we can decide conclusively whether an 
arbitrary input in that language should be accepted or rejected.

L ∈ RE: We cannot write a computer program that “solves” problems 
expressed by L. That is, we can’t decide conclusively whether an 
arbitrary input in that language should be accepted or rejected.

However, RE languages are recognizable, meaning that given an 
answer that we know to be correct for a given problem in RE, there is 
an algorithmic way to prove it.



REDUCIBILITY

w

h

Problem A: Calculate the area of this rectangle:

Problem B: Calculate the product of these two numbers:

w x h

Which problem is harder to solve?



REDUCIBILITY

If we can take a problem, A, and convert it to another form, B, 
then if B has a solution, so does A.

1. If A is reducible to B, and B is decidable, then A is decidable.

2. If A is reducible to B, and A is undecidable, then B is 
undecidable.



REDUCIBILITY

HALTTM = { <M, w> | M is a TM and M halts on string w }
Is HALTTM decidable?

Proof by contradiction:
NO

1. Let’s assume that HALTTM is decidable.

2. That means we can construct a TM, HALT-DECIDER, which decides it.

3. This implies that we could build another TM, S, such that:

3a. If you give S the input <M, w>, where M is a Turing Machine and w an input string

3b. S runs HALT-DECIDER on <M,w>, HALT-DECIDER must either accept or reject. 

3c. If HALT-DECIDER rejects <M,w>, then S rejects.

3d. If HALT-DECIDER accepts <M,w>, then M must halt, so run M on w until it halts.

3e. If M accepts w, then S accepts. If M rejects w, then S rejects.

What did we 

just build?

4. That would meant that ATM can be solved by HALTTM. In other words, 
ATM is reducible to HALTTM.

5. But since ATM is undecidable, HALTTM is also undecidable, which is a 
contradiction.



THE POST CORRESPONDENCE PROBLEM

Can we arrange this set of dominos in a way (including repeats) 
so that the string on top is the same as the string on bottom?

A

AB

BA

A

B

B

ABC

AB

BAC

A

CBA

B

What about this set?



THE POST CORRESPONDENCE PROBLEM

A PCP instance is an arbitrary set of dominos, P:

P = {                             
T1

B1

T2

B2

TK

BK

, , … , }

Let Match be defined as a sequence of length L: i1, i2, … iL
where t1t2…tL = b1b2…bL

Then PCP = { <P> | P is an instance of PCP with a match }.

Is PCP Decidable?

In other words, can we construct a Turing Machine that will 
tell us if an arbitrary P contains a match? NO (see pages 228 - 233 for 

the proof)



THE POST CORRESPONDENCE PROBLEM

A PCP instance is an arbitrary set of dominos, P:

P = {                             
T1

B1

T2

B2

TK

BK

, , … , }

Let Match be defined as a sequence of length L: i1, i2, … iL
where t1t2…tL = b1b2…bL

Then PCP = { <P> | P is an instance of PCP with a match }.

Is PCP Verifiable?

In other words, can we construct a Turing Machine that 
given P and an arrangement, w, of the members of P can 
tell us if w is a valid match?



VERIFIER

<w>

ACCEPT

REJECT

DECIDER M FOR L
If M accepts w, then w ∈ L

If M rejects w, then w ∉ L

We can build a decider for any language in R.

<w, c>

ACCEPT

REJECT

VERIFIER V FOR L
If V accepts <w, c>, then w ∈ L

If V rejects <w, c>, then w’s membership 
in L is still unknown.

We can build a verifier for any language in RE.

The “certificate”, something 

that attempts to prove that w 

∈ L.



VERIFIER

w: <an encoding of dominos>

<w, c>
If V accepts <w, c>, then w ∈ L

If V rejects <w, c>, then w’s membership 
in L is still unknown.

PCP = { <P> | P is an instance of PCP with a match }.

c: <an encoding of an arrangement of dominos that form a match>

If c is a valid match, we know that w is member of PCP.

If c is not a valid match, this doesn’t tell us anything about w, it 
might still have a match we don’t know about.

ACCEPT

REJECT

VERIFIER V FOR PCP



VERIFIER

ATM = { <M, w> | M is a TM that accepts string w }

Is ATM Verifiable?

In other words, given a Turing Machine, M, an input string, w, and 
some kind of extra information, c, claiming to prove that M accepts 
w, can we verify that claim?   



VERIFIER

L(M) = { x#x | x ∈ {0,1}* }
w = 001#001 
c = ???

What extra information could we use 

to attempt to prove that w is 

accepted by M?


