CSC 240

DEGIDABILITY

A Turing machine accepts a string if it enters an accept state while processing that string.

A Turing machine rejects a string if it enters a reject state while processing that string.

A Turing machine loops forever on a string if it never enters an accept or reject state while processing that string.

A Turing machine halts on a string if it accepts or rejects that string.

TURING LANGUAGES

A language is "Turing Recognizable" if a Turing machine recognizes it.

A language is "Turing Decidable" if a Turing machine decides it, that is if the strings of that language cause the Turing machine to end up in an accept or reject state.

Can we build a Turing Machine that *recognizes* A_{TM} ? Can we build a Turing Machine that *decides* A_{TM} ?

ACCEPTANCE PROBLEMS

We can build a Turing Machine that tells us:

If a DFA will accept a string.

If an NFA will accept a string.

If a Regular Expression will accept a string.

If a CFG describes a string.

If a PDA accepts a string.

M - Some Turing Machine

<M, w> - Some Turing Machine and its string input encoded as a string

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string w } \}$

Can we build a Turing Machine that *decides* A_{TM}?

In other words, can we build a Turing Machine that tells us, for an arbitrary TM, M and an arbitrary input string w, if M will accept or reject w?

U is a Universal Turing Machine

It can accept any Turing Machine and an input string and run the Turing Machine as it processes w.

If M halts on w, H will halt on <M,w>
If M loops on w, H will loop on <M,w>

If M halts on w, C will loop on <M,w>
If M loops on w, C will halt on <M,w>

THE HALTING MACHINE

If C halts on <C>, C will loop on <C>
If C loops on <C>, C will halt on <C>

<M, w> - Some Turing Machine and its string input encoded as a string

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$

Can we build a Turing Machine that *decides* A_{TM}?

In other words, can we build a Turing Machine that tells us, for an arbitrary TM, M and an arbitrary input string w, if M will accept or reject w?

NO! A_{TM} is recognizable, but not decidable.

TURING DECIDABLE LANGUAGES

ACCEPTANCE PROBLEMS

We can build a Turing Machine that tells us:

If a DFA will accept a string.

If an NFA will accept a string.

If a Regular Expression will accept a string.

If a CFG describes a string.

If a PDA accepts a string.

Decidable

We can't build a Turing Machine that tells us:

If a TM will halt (accept or reject) on a string.

Not Decidable

All of these problems (languages) are *recognizable* by at least one TM. Are there problems (languages) *not recognizable* by any TM?

UNRECOGNIZABLE LANGUAGES

$$TM = \{M_0, M_1, M_2, M_3, ...\}$$

M ₀ recognizes the	se strings					<u> </u>	
		<m<sub>0></m<sub>	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	•••	
	M_0	Y	N	Y	Υ	•••	> ,}
	M ₁	N	Y	Y	Υ	•••	>,}
	M_2	Y	Y	N	N	•••	
	M ₃	N	N	Y	N	•••	
	• • •	•••	•••	•••	•••	•••	

$TM = \{M_0, M_1, M_2, M_3, ...\}$

		<m<sub>0></m<sub>	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>		
	M_0	Y	N	Y	Y	•••	
	M_1	N	Y	Y	Y	•••	
	M_2	Y	Y	N	N	•••	
	M_3	N	N	Y	N	•••	
	• • •	•••	•••	•••	•••	•••	
The "Diagonal La	L _D	Y	Y	N	N	•••	does this row have a pairing?

$TM = \{M_0, M_1, M_2, M_3, ...\}$

	<m<sub>0></m<sub>	<m<sub>1></m<sub>	<m<sub>2></m<sub>	<m<sub>3></m<sub>	•••
M_0	Y	N	Y	Y	•••
M_1	N	Y	Y	Y	•••
M_2	Y	Y	N	N	•••
M_3	N	N	Y	N	•••
• • •	•••	•••	•••	•••	•••
$\longrightarrow \overline{L_D}$	N	N	Υ	Υ	

Generate the complement of the row by flipping its Y's and N's.

does this row have a pairing?

The Complement of the Diagonal Language.

$$TM = \{M_0, M_1, M_2, M_3, ...\}$$

$$M_? \longrightarrow \{ \langle M_3 \rangle, \langle M_4 \rangle, \ldots \}$$

This language is not recognizable by any Turing Machine!

There is NO Turing Machine that will recognize this set of strings.

 L_{D} is not recognizable by any Turing Machine

$$|\mathsf{TM}| < |\mathscr{L}|$$

How many different possible Turing machines are there?

How many different possible Languages are there?

 $\overline{L_D}$ is not recognizable by any Turing Machine

$$|\mathsf{TM}| < |\mathscr{L}|$$

