
CONTEXT FREE LANGUAGES
CSC 240



WAYS TO DESCRIBE A LANGUAGE

Finite automata, which recognize strings in the language.

Regular expressions, which describe strings in the language.

Context-Free grammar, which describe structure of the language.



THE ADD AND SUBTRACT LANGUAGE

L = {“4 + 2”, 5 - 1”, “20 - 14”, …}
L = {w | w is a pair of integers which are added or subtracted}

R = 

Σ = {D, +, -}
D = {0…9}

D+ (+ ∪ -) D+

q0 q1D

D

q2+,- q3
D

D



THE ADD AND SUBTRACT LANGUAGE

L = {“4 + 2”, 5 - 1”, “20 - 14”, …}
L = {w | w is a pair of integers which are added or subtracted}

R = D+ (+ ∪ -) D+

Expression

Operatorinteger integer

Expression → integer Operator integer
Operator → +
Operator → -

Context-Free Grammar of L



CFG FORMALIZED

Variables, also known as nonterminal symbols.

Expression → integer Operator integer
Operator → +
Operator → -

Terminals, consisting of the alphabet of the grammar.

Context-Free Grammars

Substitution rules, also known as production rules.

Starting Symbol, which must be a nonterminal.



CFG FORMALIZED

Context-Free Grammars
G = (V, Σ, R, S)

V: A finite set called variables.

Σ: A finite set called the terminals (must be disjoint from V).

R: A finite set of substitution rules.

S: is the start variable, where S ∈ V.



CFG FORMALIZED

Expression → integer Operator integer
Operator → +
Operator → -

G = ( {Expression, Operator} , { ℤ, +, -}, R, Expression)

L = {w | w is a pair of integers which are added or subtracted}



DERIVATIONS

L = {w | w is a pair of integers which are added or subtracted}L = {w | w is a pair of integers which are added or subtracted  
              or a single integer value}

Expression → integer Operator integer
Operator → +
Operator → -

Expression → integer
Grammar

Derivation

Expression ⇒ integer Operator integer
⇒ integer + integer

Expression ⇒ integer Operator integer
⇒ integer - integer

Expression ⇒ integer



DESIGNING CFG - FUNCTION PROTOTYPE

L = {w | w is a valid C++ Function Prototype }

void printSummary();

int doubleNumber(int x);

float calculateAverage(int x, int y);

Prototype → nameReturn (Args) ;
Return → Type | void

Type → int | double
Args → ε | ArgList

ArgList → SingleArt |
SingleArg→ Type name

ArgList, SingleArg

building grammars is a 
recursive process, so watch for 
places where you need a base 
case.



CONVERT REGEX TO CFG

0*1

Expression→ 1Zeros
Zeros→ ε | Zeros0

a(b ∪ c*)

Expression→ ε Options
Options → b | Cees

Cees→ ε | Ceesc

building grammars is a 
recursive process, so watch for 
places where you need a base 
case.



DFA TO CFG

M1

ℒ (M1) = { w | w contains at least one 1 and an even number of 0’s follow the last 1 }

q1 → 0 q1 | 1 q2
q2 → 1 q2 | 0 q3
q3 → 1 q2 | 0 q2

| ε

01100 0110

q1 ⇒
Grammar Derivation

0 q1
⇒ 01 q2
⇒ 011 q2
⇒ 0110 q3
⇒ 01100 q2
⇒ 01100ε
⇒ 01100

q1 ⇒ 0 q1
⇒ 01 q2
⇒ 011 q2
⇒ 0110 q3



RLS ARE CFLS BUT CFLS ARE NOT ALL RLS

L = { anbn | n ∈ ℕ }

Can we build an NFA for this language?

No! (Remember to watch the Pumping Lemma video)

This language requires an infinite amount of memory 
and no FINITE automata has INFINITE memory.



RLS ARE CFLS BUT CFLS ARE NOT ALL RLS

L = { anbn | n ∈ ℕ }

Can we build a CFG for this language?

X → aXb | ε

Derivation

X ⇒ aXb
⇒ aaXbb
⇒ aaaXbbb
⇒ aaaεbbb
⇒ aaabbb

Because of their recursive nature, a CFG allows us to 
describe languages that require INFINITE memory.



ALL LANGUAGES

RLS ARE CFLS BUT CFLS ARE NOT ALL RLS

                           ALL CONTEXT FREE LANGUAGES     

ALL REGULAR 
LANGUAGES



CFGS IN PARSERS

http://cs.umw.edu/~finlayson/class/fall13/cpsc401/notes/08-bison.html

http://cs.umw.edu/~finlayson/class/fall13/cpsc401/notes/08-bison.html

