
REGULAR EXPRESSIONS
CSC 240

DFAS & NFAS

▸ A language is called a regular language if some finite
automaton recognizes it.

▸ Every nondeterministic finite automaton has an equivalent
deterministic finite automaton.

▸ A language is regular if and only if some nondeterministic
finite automaton recognizes it.

OPERATIONS ON REGULAR LANGUAGES (THE REGULAR OPERATIONS)

Let A and B be regular languages:

Union: A ∪ B = { x | x ∈ A ∨ x ∈ B }
Concatenation: A ○ B = { xy | x ∈ A ∧ y ∈ B }

Star: A* = { x1x2…xk | k ≥ 0 ∧ each xi ∈ A}

Examples:
Σ = {a…z}

A = { happy, sad }
B = { cat, dog }

A ∪ B = { happy, sad, cat, dog }
A ○ B = { happycat, sadcat, happydog, saddog}
A* { ε, happy, sad, happyhappy, sadsad, happysad,  
 sadhappy, sadsadhappy, sadhappysad, … }

Usually written
AB

CONCATENATION

Article = { A, The }
Noun = { Cat, Dog, Moose, Cow }
Verb = { Eats, Chases, Kicks, Loves }

ArticleNounVerbArticleNoun = { 
 ACatEatsTheDog, TheMooseChasesACow,  
 ACowLovesACat, … }

Σ = {a…z, A…Z}

If Article, Noun, and Verb are regular languages, is
ArticleNountVerbArticleNoun a regular language?

CONCATENATION SYNTAX

Σ = {a…z}
A = { a, b }
AA = { aa, ab, ba, bb }

AAA = { aaa, aab, aba, baa, bba, bab, abb, bbb }

A0 = {ε}
A1 = A
A2 = AA
A* = { x1x2…xk | k ≥ 0 ∧ each xi ∈ A}

Sometimes
called the
“Kleene Star”

A+ = { x1x2…xk | k ≥ 1 ∧ each xi ∈ A}
Sometimes
called the
“Kleene Plus”

CLOSURE

ℕ = {1, 2, 3, … }

ℕ is closed under multiplication:

∀x. (x ∈ ℕ →  
 ∀y. (y ∈ ℕ → x · y ∈ ℕ) 
)

For every x and y in the set of natural numbers, the product of x
and y is a natural number.

CLOSURE PROPERTIES

Regular Languages are closed under the Union operation.

Regular Languages are closed under the Concatenation operation.

Regular Languages are closed under the Star operation.

WAYS TO DETERMINE IF A LANGUAGE IS REGULAR

▸ If we can create a DFA that recognizes L.

▸ If we can create an NFA that recognizes L.

▸ If L can be formed from other regular languages using
regular operations.

REGULAR EXPRESSIONS

Regular Expressions are expressions built from regular operations and
are used to describe a language.

ε

∅

a for some a in Σ

R is a regular expression if R is:

(R1 ∪ R2) Where R1 and R2 are regular expressions

(R1 ○ R2) Where R1 and R2 are regular expressions

(R1*) Where R1 is a regular expression

REGULAR EXPRESSIONS

Σ = {0, 1}

0*10* = {w | w contains a single 1}

Σ*1Σ* = {w | w contains at least a single 1}
Means “star
operator on the
alphabet” Σ*001Σ* = {w | w contains the substring 001}

1*(01+)* = {w | every 0 in w is followed by at least a single 1}

(ΣΣ)* = {w | w is a string of even length}

01 ∪ 10 = {01, 10}

0Σ*0 ∪ 1Σ*1 ∪ 0 ∪ 1 = {w | w starts and ends with the same symbol}

(0 ∪ ε)1* = 01* ∪ 1*

REGULAR EXPRESSION IDENTITIES

R ∪ ∅ = R
Adding the empty language to another language doesn’t change it.

R ○ ε = R
Concatenating the empty string to another string doesn’t change it.

However:

R ∪ ε ≠ R
If R = 0, then L (R) = {0}, but L (R ∪ ε) = {0, ε }

R ○ ∅ ≠ R

If R = 0, then L (R) = {0}, but L (R ○ ∅) = ∅

REGULAR EXPRESSION IN PROGRAMMING

Σ = {D, +, -, .}
(+ ∪ - ∪ ε) (D+ ∪ D+.D* ∪ D*.D*) Positive or negative numbers with or without

decimals.

D = {0…9}

Σ = {W, ., @}
W = {a…z, A…Z}

W+(.W+)*@W+(.W+)+ Valid email addresses

