
NON-DETERMINISTIC FINITE
AUTOMATA (NFA)

CSC 240

AUTOMATON

OPENCLOSED

Person

Nobody

Nobody Person

A State Diagram

transition state

FINITE AUTOMATA

“Accepting State”

Input: 1101

“Start State”

Accepted

Input: 0010 Not Accepted

This finite automata accepts any string that ends in 1 and 
any string that ends with an even number of 0’s following a 1.

DETERMINISTIC FINITE AUTOMATA (DFA)

▸ Defined relative to an alphabet.

▸ Each state has exactly one transition for each symbol in the
alphabet.

▸ Has a unique Start State.

▸ Has zero or more more accepting states.

DFA - FORMAL DEFINITION

DFA: Defined by a 5-tuple: (Q, Σ, δ, q₀, F)

Q: A finite set called states.

Σ: A finite set called the alphabet.

δ: Q x Σ → Q is the transition function.

q₀: is the start state.

F: is the set of accepting states where F ⊆ Q.

M4

FINITE AUTOMATA

q1 r1

q1 q2

q1 q2

r1 r2

r2 r1

M4 = { , , , , }{s, q1, q2, r1, r2} {a, b} δ s {q1, r1}
ℒ (M4) =

δ a b

s

q1

q2

r1

r2

{ w | w start and end with the same symbol}

SOME DEFINITIONS

Character: A single symbol.

Alphabet (Σ): A finite, non-empty set of characters.

String Over Alphabet Σ: A finite, sequence of characters drawn from Σ.

Empty String (ε): A string containing no characters.

A Formal Language: A set of strings.

LANGUAGE OF AN AUTOMATA

The Language of an Automata: The set of strings accepted by the automata.

ℒ (M) = A

The ℒanguage of automata M

A is the set of all strings accepted by M.
“M Recognizes A”

Regular Language: A language that is recognized by a DFA.

ℒ (M) = A
“A is a Regular Language”

NON-DETERMINISTIC FINITE AUTOMATA (NFA)

▸ Defined relative to an alphabet.

▸ Each state has zero or more transitions for each symbol in
the alphabet.

▸ Has a unique Start State.

▸ Has zero or more more accepting states.

NON-DETERMINISTIC FINITE AUTOMATA (NFA)

NFAs have multiple transitions they could make at each state.

NFAs accept an input if any set of valid transitions lead to an
accept state.

Input: 1101 Accepted

NON-DETERMINISTIC FINITE AUTOMATA (NFA)

ε transition: A transition that doesn’t consume input.

NON-DETERMINISTIC FINITE AUTOMATA (NFA)

DFA Computation vs. NFA Computation

NON-DETERMINISTIC FINITE AUTOMATA (NFA)

Input: 010110
0

Symbol Read: Q1Start State

Q1

1
Q2Q1 Q3

0
Q1 Q3

1
Q2Q1 Q3 Q4

1
Q2Q1 Q3 Q4 Q4

0
Q1 Q3 Q4 Q4

Q3

Q2

Q3

Q4 Q4

Accepted
NFAs accept an input if any set of
valid transitions lead to an accept

state.

NON-DETERMINISTIC FINITE AUTOMATA (NFA)

Two ways to think about NFAs:
1. NFAs are able to guess the correct sequence of transitions to use in order to
reach an accepted state.

2. NFAs attempt all possible sequences of transitions simultaneously.

Questions:
1. If a language is accepted by a DFA, does an NFA exist that will accept it?

Yes! Because every DFA is an NFA already, it just has a single path.

2. If a language is accepted by an NFA, does an DFA exist that will accept it?

Yes! Find the proof of this idea on page 55 of the Sipser text.

NFA - FORMAL DEFINITION

DFA: Defined by a 5-tuple: (Q, Σ, δ, q₀, F)

Q: A finite set called states.

Σ: A finite set called the alphabet.

δ: Q x Σε → 𝒫(Q) is the transition function.

q₀: is the set of start states.

F: is the set of accepting states where F ⊆ Q.

NFA: Defined by a 5-tuple: (Q, Σ, δ, q₀, F)

CREATING A DFA FROM AN NFA - THE SUBSET (OR POWERSET) CONSTRUCTION

Q: {1, 2, 3}
𝒫(Q): {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }

δ a b
{1} {1, 3} {2}

{1, 3} {1, 3} {2}

{2} {2, 3} {3}

{2, 3} {1, 2, 3} {3}

{3} {1} ∅

{1, 2, 3} {1, 2, 3} {2, 3}

Σ: {a, b}
q₀: {1}

F: {1}

{1, 3}

a

{1}

{2}

ba

b

{2, 3}

a

{3}

b
{1, 2, 3}

a

b

a

∅

b

a

b

a, b

Accepted: ε, a, baba, and baa

*
*

*

Rejected: b, bb, and babba

