Homework 02

Lee Falin

January 19, 2018

1 Example Problem

1.1 Theorem

If n is an even integer, then n^{2} is even.

1.2 Proof

Since n is even, there is some integer k such that

$$
\begin{equation*}
n=2 k . \tag{1.1}
\end{equation*}
$$

This means that

$$
\begin{equation*}
n=(2 k)^{2}=4 k^{2}=2(2 k)^{2} . \tag{1.2}
\end{equation*}
$$

From 1.2, we see that there is an integer $m=2 k$ where

$$
\begin{equation*}
n^{2}=2 m \tag{1.3}
\end{equation*}
$$

Therefore, n^{2} is even.

2 Sum of Evens

2.1 Theorem

The sum of any two even numbers is even.

2.2 Proof

3 Sum of Evens

3.1 Theorem

The sum of an odd number and an even number is odd.

3.2 Proof

4 Product of Integer and Even

4.1 Theorem

The product of any integer and an even number is even.

4.2 Proof

5 Product of Odds

5.1 Theorem

The product of any two odd numbers is odd.

5.2 Proof

